
An Allocation and Provisioning Model of Science Cloud for
High Throughput Computing Applications

Seoyoung Kim
National Institute of

Supercomputing and
Networking, KISTI

Daejeon, Republic of Korea
sssyyy77@kisti.re.kr

Jik-Soo Kim
National Institute of

Supercomputing and
Networking, KISTI

Daejeon, Republic of Korea
jiksoo.kim@kisti.re.kr

Soonwook Hwang
National Institute of

Supercomputing and
Networking, KISTI

Daejeon, Republic of Korea
hwang@kisti.re.kr

Yoonhee Kim
∗

Dept. of Computer Science
Sookmyung Women’s Univ.
Seoul, Republic of Korea

yulan@sookmyung.ac.kr

ABSTRACT
Recent cloud computing enables numerous scientists to earn
advantages by serving on-demand and elastic resources when-
ever they desire computing resources. This science cloud
paradigm has been actively developed and investigated to
satisfy requirements of the scientists such as performance,
feasibility and so on. However, effective allocation and pro-
visioning virtual machines on clouds are still considered as
a challenging issue in scientists using high throughput com-
puting, since it determines whether they can earn benefits
from economy of scale in clouds or not. Moreover, allocating
the “right” provisioned cloud resources on an optimal data
center is very important as performance can vary widely de-
pending on where and under what circumstances it actually
runs. In these reasons, it is required that an appropriate
and suitable model for science cloud to support increasing
scientists and computations.

In this paper, we present an allocation and provisioning
model of science cloud, especially for high throughput com-
puting applications. In this model, we utilize job traces
where statistical method is applied to pick the most influen-
tial features for improving application performance. With
the feature, the system determines where VM is deployed
(allocation) and which instance type is proper (provision-
ing). An adaptive evaluation step which is subsequent to
the job execution enables our model to adapt to dynamical
computing environments. We show performance achieve-
ments as comparing the proposed model with other policies
through experiments. Finally, we expect that improvement

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CAC ’13, August 05 - 09 Miami, FL, USA
Copyright 2013 ACM 978-1-4503-2172-3/13/08 ...$15.00.

on performance as well as reduction of cost from resource
consumption through our model.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Resource Management

Keywords
Science Cloud, High Throughput Computing, Job Profiling,
Cloud Provisioning, PCA(Principal Components Analysis)

1. INTRODUCTION
Cloud computing nowadays enables numerous scientists

to earn advantages by serving on-demand and elastic re-
sources whenever they desire computing resources. This sci-
ence cloud paradigm has been actively developed and in-
vestigated to satisfy requirements of the scientists such as
performance, feasibility and so on. However, effective al-
location and provisioning virtual machines on clouds are
still considered as a challenging issue in scientists using high
throughput computing, since it determines whether they can
earn benefits from economy of scale in clouds or not. More-
over, allocating the “right” cloud resources(i.e., virtual ma-
chine type, cloud service site) on an optimal data center is
very important as performance can vary widely depending
on where and under what circumstances it actually runs. In
these reasons, it is required that an appropriate and suit-
able model for science cloud to support increasing scientists
and computations. Fortunately, job history which poten-
tially involves status of resources where jobs are executed
as well as properties of applications can lead us to devise
performance-optimized provisioning scheme with meaning-
ful factors through an appropriate processing of the traces.

In this paper, we present a PHAP(Profiling Historical
factor based Allocation and Pro- visioning model) which is

an allocation and provisioning model of science cloud, espe-
cially for high throughput computing applications. In this
model, we utilize job traces where statistical method is ap-
plied to pick the most influential features for improving ap-
plication performance. With the feature, the system deter-
mines where VM is deployed (allocation) and which instance
type is proper (provisioning). An adaptive evaluation step
which is subsequent to the job execution enables our model
to adapt to dynamical computing environments. We show
performance achievements as comparing the proposed model
with other policies through experiments. Finally, we expect
that improvement on performance as well as reduction of
cost from resource consumption through our model.

The rest of this paper is structured as follows. Section 2
discusses related work and Section 3 presents introduction of
the proposed system model where application model will be
introduced. We discuss allocation and provisioning model
in details in Section 4 , while Section 5 discusses experiment
and its results. Finally, we conclude this paper and discuss
future work in Section 6.

2. RELATED WORK
As growing attentions to clouds in several science com-

munities, a lot of efforts to provide optimized and facilitated
virtual environments on science clouds have been made. It is
associated with that almost science applications typically in-
volve long-term computer executions and huge dataset pro-
cessing and large-scale computations requiring the availabil-
ity of abundant computing infrastructures. Therefore, it is
important to identify requirements of users as well as ap-
plications and to allocate adequate quantities of resources.
Here, we are going to introduce several related works fo-
cused on two aspects; 1) cloud provisioning and resource
allocating issue 2) utilization of job traces.

Lei Wang et al.[11] had investigated cloud modeling for
scientific applications and evaluated their model using two
kinds of workloads-MTC(Many Task Computing) and HTC
(High Throughput Computing). The model adopted a pol-
icy which is based on the ratio of waiting jobs to total avail-
able VM to lease VM.

Another work, [12] proposed a controlling system which
allocates appropriate resources through monitoring and anal
-ysing current workloads of applications. In [12], a virtual
server is operated on a group of physical machines and each
server is responsible for particular application on the hetero-
geneous machines. The system, in addition, predicts future
workload through analysing resource utility and real-time
requirements of applications and schedules using the pre-
dicted information. In this way, diverse physical machines
can be maintained in optimal status.

However, the above two studies mainly focused on the
proper resource management and utilization without con-
sidering performance issue.

On the other hand, there also exist some researches using
job histories. One of them [6] had proposed for predicting
application runtime and queue wait time. In [6], it had ex-
ploited genetic algorithm to search similar jobs among job
histories. This study predicts two metrics by mining histor-
ical workloads and the two are correspond to job execution
time and wait time in queue. It firstly searches the most sim-
ilar job among the job histories using genetic algorithm con-
sidering both characteristics of applications and resources.
With the discovered one, it predicts two metrics (application

runtime and queue wait time) using instance-based learning
techniques. However, the main focus of the [6] do not lie on
resource managements, but only runtime predictions.

Meanwhile, Bhuvan et al. [10] also exploited application
profiling in shared resources to offer guaranteed performances
as well. Their method for analysis, on the other hand, is dif-
ferent with ours since they consider only an aspect among
various features.

An allocation and provisioning model we present focuses
on the followings: First, selection of a cloud site which serves
optimal performance without bursty workloads and results
in efficient resource allocation. Secondly, a proper virtual
machine provisioning which contributes to satisfy require-
ments of user and application. To determine the above two,
our model utilizes three representative factors through pro-
filing job traces. It is performed adaptably by evaluating
profiled results and enables to adapt to current status of
resources regardless of failure or overloading on systems.

3. SYSTEM MODEL

3.1 Target Application Model
Our model mainly focused on two kinds of workload types;

High Throughput Computing (High Throughput Comput-
ing) and Many Task Computing (MTC) are generally found
in most of workloads from various scientific applications.
These kinds of workloads which are also called as ‘Bag-of
Tasks(BoT)’ have several characteristics in common like the
followings:

• Massively Paralleled
• Independent in each task (minor dependent tasks)
• Adoption of ‘throughput ’ as a main metric(over a fixed

period of time)

Assume that a job(ji) is submitted by some user has n num-
ber of tasks(tx+1, tx+2, · · · , tx+n, here x is arbitrary job id)
by parameter sweeping. The running time of each task is as-
sociated with overall total makespan of a job(ji). ‘through-
put ’ indicates the number of completed tasks in a fixed pe-
riod of time and so we can induce a throughput of ji as the
following(Eq. 1).

throughput(ji) =
n

makespan(ji)
(1)

To increase throughput of ji, we have to reduce makespan
of ji where all of n number of tasks should be completed
since n is fixed by user when he submits the job. However,
it is a hard work to predict makespan even though duration
of one task is given, since each of them can have dynamic
execution time by varied parameter value with independent
operations. Hence, it is essentially required to recognize
properties of the submitted job(i.e. tasks).

3.2 System Model
Figure 1 shows an abstract architecture where proposed

PHAP(Profiling Historical factor based Allocation and Pro-
visioning model) model is applied. It consists of five layers
in total and main layer is the third layer named as ‘Pro-
filing &Provisioning Layer ’. Once users desire to compute
their application, make their requests through the first layer
denoted as ‘User request Layer ’. The made requests in
the first layer are sent to the next layer; ‘Job Management

Figure 1: Abstraction of Overall System Model

Layer’. This layer is responsible to take requirements from
the above layer and process them by producing job descrip-
tion files. According to the described information, a set of
tasks for a job is produced and their information is recorded
on database. After then, the third layer referred as ‘Profil-
ing &Provisioning Layer’ prepares job submissions through
decisions of a cloud site to be submitted and an instance
type using profiling services(Factor Extract & Factor Deci-
sion Service). The decisions are made by ‘dispatcher ’ and
it periodically interacts with ‘Factor decision service’ to get
profiling information and ‘Monitoring service’ to check sta-
tus of virtual machines as well as tasks on them. ‘Moni-
toring Service’ collects status of virtual machines and tasks
and records dynamic information of each cloud site. Job
profile repository stores job profiles by mining some im-
portant information as a form of profile schema whenever
all of tasks in each job are completed. Profiling evaluator
and controller manage the stored profiles by evaluating with
credit and controlling profiles with add/remove commands.
VM image repository is a storage to keep VM backup im-
ages and its instances can be created using the stored snap-
shots. Virtual Machine layer which is located below the
third layer represents virtual machine pool where VMs have
diverse properties. The fifth layer named as ‘Physical Ma-
chine Layer ’ includes several cloud sites(cloud data centers),
since we assume that there are multiple cloud sites(also de-
notes data center) which are located on geographically dis-
tributed placements. Each cloud site is connected to the
other cloud sites with WAN(Wide-Area-Network) and users
can access to them only through a cloud service provider.
Each site updates their monitoring information like total
number of jobs, the number of failed jobs, etc. to cen-
tral DB server by Monitoring service. In a practical en-
vironment, it is possible to apply the existing integrated
middleware framework over the second and third layer and
to operate the overall allocating and provisioning cycle in
accordance with the cycle of middleware. In fact, we are
processing to implement this model on an existing frame-
work, HTCaaS [9] which is adopting an agent-based multi-
level scheduling mechanism. Hence, some modules such as
Dispatcher, Monitoring service are able to be integrated or
replaced into modules with same roles in HTCaaS. For ex-

ample, Agent manager and Job manager which are compo-
nents of HTCaaS can cover deploying VM instances and sub-
mitting jobs respectively instead of Dispatcher. Thus, when
an event for job submission is occurred, a virtual machine
having agent (an agent requires only one core) is deployed to
the chosen site and the agent pulls a task. The details of job
submission will be explained on the next section together
with allocation & provisioning algorithms.

4. ALLOCATION AND PROVISIONING
MODEL

4.1 A Processing Cycle
Overall procedure of PHAP is classified into the three

great divisions; (1)Profiling, (2) Allocation & Provisioning,
(3)Evaluating.

The first division is to derive principal information through
analysing job traces. Before performing the analysis, two
requisite conditions should be accomplished. One is check-
ing whether enough profiles exist and the other is mining
information from collected traces in a scheme defined. Af-
ter that, decisions for allocating and provisioning are made
using principal factors extracted. Once all executions for a
request(job) is completed, evaluating is performed by calcu-
lating a difference between referred profile and new records
of job just completed. The details of above three division
will be explained on the following subsections in order of
sequence.

4.2 Profile Analysis
As mentioned previously, our model exploits kernel infor-

mation by refining job profiles. Exploiting job profiles has
a lot of advantages in diverse aspects such as estimating or
predicting job runtime, measuring performance of comput-
ing resources and exploring system errors, etc. Above all,
it potentially involves status of computing resources where
jobs run as well as application properties which are essen-
tially needed for execution. However, these traces typically
exist in a large-scale and they are required to be processed
and refined properly so that picking out useful features for
the performance improvement. This section discusses how
to perform the job profiling and apply the resulted kernel
data to Clouds through a practical example.

To analysis and explore features from tasks, we employed
PCA(Principal Component Analysis)[4] which is one of the
well-known technique from statistics for simplifying large-
scale multivariate data. As sorting dimensions in order of
importance, we can extract important information which is
called Principal Components(PC) and can discard low sig-
nificance dimensions with minimal effort. Particularly, we
perform the technique to pick the most powerful one among
factors(parameters) describing a task. Before applying the
analysis, we need to define factors which are able to describe
a task as well as have much relations with performance.

Factors to be determined are categorized according to two
aspects; Application and Resource. As application factors,
several arguments or inputs used during runtime can be con-
sidered, since they have high possibilities to affect execution
time of the applications directly. Whereas a resource aspect,
physical parameters which have a large impact on duration
of jobs are included such as CPU and network related fac-
tors(e.g., the number of cores, CPU power, network band-
width, computing resource location[distance] etc).

Table 1: An Example of Determined Factors
- Factor name Category Property
f1 LIGANDS id -
f2 PROTEIN id -
f3 ga num eval Application -
f4 ga run Factor -
f5 ga pop -
f6 ga generation -
f7 num run -
f8 Distance static

f9 Reliability dynamic

f10 # of CPU Resource static

f11 Network cost Factor static

f12 Avg.Waiting time dynamic

f13 Agent Reliability dynamic

f14 Execution Time

Figure 2: A Scree Plot of Analysis

Figure 3: Plots of PCA scores

PC =< fprin a, fprin r, Jprin, credit > (2)

M =

 t1,1 · · · t1,d
...

. . .
...

tn,1 · · · tn,d

 (3)

EigenV ector5 = (.017,−.011, .073, · · · , .412, .205) (4)

PCscore t1 = 0.017× t1,1 + · · ·+ 0.205× t1,13 (5)

= 1.634

Table 2: An Example Monitoring Information of
Cloud Sites in Amazon EC2

Name f8 f9 f10 f11 f12 f13

Virginia 1 0.61 8 5 2 0.45

Oregon -1 0.20 3 5 −1 0.91

California -1 1.00 6 5 8 0.75

Ireland 2 0.91 7 4 5 1.00

Singapore 3 1.00 4 2 3 1.00

Sydney 3 0.99 3 3 6 0.98

Tokyo 4 0.96 5 −1 7 0.99

Sao-paulo 1 0.61 -1 5 4 0.86

However, it depends on information which are monitored
on each cloud site.

Table 1 shows an example about how to define factors
of a practical application that we employed as an actual
application, Autodock[8]. In this example, we handle seven
application factors which are adopted as arguments or input
properties (f1, · · · , f7) and f3 - f7 among them are treated
as common variables for parameter sweeping. In case of re-
source, a set of elements like (f8, · · · , f13) are extracted
from monitoring information of each cloud site. These fac-
tors are classified into two types; static or dynamic. Static
factors typically refer to unchangeable properties since the
site is registered as available data center. “Distance, # of
CPU and Network cost ” belong to that type. On the other
hands, there exist dynamically changed arguments such as
“Reliability, Avg.Waiting time and Reliability of Agents”
since they are depending on the current status of jobs on
each site. Reliability is a rate of the number of successful
one over total tasks and the number changes continually.
In this example, we supplemented resources factors; Agent
Reliability which means the rate of the number of success-
ful things over total submitted agents and Agent Waiting
Time, as well. The corresponding values for each factors are
determined in different ways each other. In case of appli-
cation factors, the values themselves which are specified by
user at the submission are used.

For resource factors, on the other hands, we adopt rank
score which derives from ranking them with respect to pro-
portion relation with execution time and accords values in
ascending order of rank. In other words, a site having the
topmost rank will score a high grade. The element which
has the lowest rank becomes to get ‘-1’ instead of ‘0’. In
case of Distance, each site gets score with the number of
hops from submission site, and then converts the score with
respect to rank between them in an identical way of the
previous method. Table 2 shows an expression example of
resource factors for cloud sites in Amazon EC2 [2] where f8
and f10-f12 are expressed with the rank score as mentioned
previously.

Overall processing of the profiling is carried out as follows:

1) Construction of the Input Matrix: firstly, construct
(n x d) input Matrix M (Eq. 3) with n number of profiles
where each row is a task vector(tid) having d number of
factors(as notated on Table 6).

2) Quantile Normalization: secondly, apply the quantile
normalization to M. It intends to convert the data in a
variety of ranges into them having an identical range each
other based on quantile rank.

Table 3: Example profiles of Autodock application

id
app factors of tid r s vmid Texec(id)

f1 f2 f3 f4 f5 f6 f7

276 1 1 300000 50 150 270000 50 Sydney Done m3.xlarge 150

277 2 1 300000 50 150 270000 50 Oregon Failed m1.small 126

· · · · · · · · ·
572 3 1 600000 50 150 27000 100 Tokyo Done t1.micro 290

573 4 1 600000 50 150 27000 100 Tokyo Done m1.large 232

Table 4: converted profiles of the above example

id
app factors of tid res factors of tid s vmid Texec(id)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

276 1 1 300000 50 150 270000 50 3 0.99 3 3 6 0.98 Done t1.micro 150

277 2 1 300000 50 150 270000 50 −1 0.20 3 5 −1 0.91 Failed m1.small 126

· · · · · · · · · · · ·
573 4 1 600000 50 150 27000 100 4 0.96 5 −1 7 0.99 Done m1.large 232

Table 5: Applying PCA to profiles

id
app factors of tid res factors of tid Texec(id)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

276 − 6.6 2.5 6.6 6.7 6.7 6.6 6.6 2.5 2.5 6.7 6.6 6.69 6.6

277 − 6.7 2.5 6.6 6.7 6.7 6.6 6.6 2.5 2.5 6.7 6.6 6.71 6.6

· · · · · · · · · · · ·
572 − 6.7 6.7 6.7 6.7 2.52 6.71 6.71 6.7 6.7 6.7 6.1 6.7 6.7

573 − 6.7 6.7 6.7 6.7 2.52 6.71 6.71 6.7 6.7 6.7 6.1 6.7 6.7

Eigen
-

-9.55E
0.58 2.79 4.74 1.27 0.02 0.997 1.54 0.28 0.067

4.32E -2.67E
0.72

Value -16 -15 -15

Rank - 6 4 2 1 3 5 2 1 4 5 6 7 3

3) Principal Components Analysis: carry out PCA by
calculating correlation matrix C of input matrix M. Sub-
sequently, calculate eigenvalues and eigenvector sets which
exist as much as the number of factors.

4) Election of 1st PC and Calculation of PCA score: the
eigenvalue which is the highest one becomes the 1st PC and
PCA scores are calculated using eigenvector which is cor-
responded with eigenvalue of 1st PC. Among the results,
profile id having the highest PCA score become a represen-
tative job profile.

Here, we make use of ‘eigenvalues’ and ‘eigenvectors’
which are the variances of the objects on each PC and the
rotation vectors from the PC space back to the landmark
shape, respectively. Thus, calculating [eigenvectors * nor-
malized scores+ consensus] gives us a shape model from a
particular point in the PC shape space.

As time advanced, profiles become to be accumulated
more and more in a determined scheme which is denoted
on Eq. 2. The accumulated profiles for the above example
can be described as Table 3. After then, the resource fac-
tors are determined depending on a monitoring information
(Table 2) and the converted profiles are described as Table
4. A credit value is decisioned initially as -1 and it will be
controlled during ‘Evaluation step’.

When the analysis is achieved, the values in profiles are
converted to a normalized form by quantile normalization
and the results can be shown on Table 5 and Figure 2 as
scree plot graph. As a result, we can notice that applica-
tion and resource factor having the highest eigenvalue among
each category is f5 and f9, respectively. Accordingly, the re-
sult leads to that principal factor for application(fprin a) is

Table 6: Notations for PHAP model
- Property Description

Pid [tid, vmid, r, Texec(id), s] a profile tuple

tid <f1, f2, · · · , fd>
task vector includ

-ing tid’s parameters

vmid vmid ∈ { Instances } vm instance type

r r ∈ { us-east, · · · etc. } cloud site name

s
s ∈ { done, failed

status of a task
cancelled, waiting}

f5 and resource’s one(fprin r) is f9. Moreover, an eigen-
vector matched with the highest eigenvalue(f5, here, f5’s
one is higher than f9’s one) is EigenV ector5 as depicted on
Eq. 4. Using the vector, we can compute PCscore for all
tasks and a calculation example of it is depicted on Eq. 6.
After applying Eq. 6 to all tasks, PCscores for all the tasks
are calculated as shown on Figure 3 and a set of the tasks
which have the highest score are included to Jprin in Eq. 2.

4.3 Algorithms of PHAP Model
Once a job is submitted, it becomes to split into multiple

tasks having various arguments. To allocate resource and
provision virtual machine, first of all, check an existence of
PC as shown on Algorithm 1(line 3). If there is no PC, carry
out PCA with a list of the determined factors and recent
job traces. However, if there are no traces yet, we select a
cloud site according to Round-Robin order until a system
get enough profiles. If we gain PC through the analysis,
ProfileSelect function is achieved(line 6) with the three
results; fprin a, fprin r and each task vector as requested. In

Algorithm 1 Cloud Allocation and Provisioning Algorithm
based on Profile Analysis

1: PC = null , tnew = null, PCselected = null
2: F={defined factors}, trecent is a set of w recent profiles.
3: if PC not exists then
4: PC = PCA (F , trecent);
5: end if
6: Pselected = ProfileSelect(PC.fprin a, PC.fprin r, tnew)
7: rselected = Pselected.r
8: vmnew=vm(PC.Jprin ∩ Pselected)
9: if vmnew on rselected not exists then

10: deploy vmnew on rselected
11: end if
12: // {vmnew is the one having same type with a decisioned

vm type for new task. }
13: Schedule tnew on the Queue
14: Evaluate (Texec(new), Texec(selected));

Algorithm 2 Profile Select Algorithm

Input: fprin a, fprin r, tnew

1: Pcandidate = null , Pselected = null
2: F = {f1, ..., fa, .., fd}and{1 ≤ a ≤ d}, fprin a ∈
{f1, .., fa}, fprin r ∈ {fa+1, .., fd}

3: P ∈ JobHistory
4: repeat
5: each P In JobHistory
6: Find P where P.j(fany|1≤any≤a)==tnew(fprin a)
7: Pcandidate = Pcandidate∪ P
8: until Puncheck == empty
9: Pselected = MIN(P.Texec) && MAX(P.r(fprin r))

Output: Pselected

order to choose appropriate profile to be used for allocation
and provisioning, we follow Algorithm 2. For all of exist-
ing profiles, search profiles whose application factor has the
same value with that of requested task and let the profile
include in a set of candidate profiles(line 8). After then,
elect profiles which has maximum score of resource factor
and minimum execution time(line 9). Finally, it returns the
satisfied profile(s) as Pselected. Therefore, it provides a site
information as rselected(line 7 of Algorithm 1) and decides
a type of vm based on intersection results between repre-
sentative task set(Jprin) and the chosen profiles. Once a
type of vm is decided, it examines the cloud site(rselected)
to check whether a vm which is the same type with vmnew is
available, or not. If available, it schedules the task into the
vm, otherwise, it deploys vmnew to rselected. When a task
is finished, evaluate it by calculating difference between its
execution time and the profile we referred to. The difference
is reflected on credit for PC and if the credit is under -2,
it performs PCA(line 4 of Algorithm 1) again with recent
profiles. The details about adaptive evaluation is indicated
on the previous work[5].

5. EXPERIMENTS

5.1 Experimental Setting
We performed this experiment based on measurements

over real systems which provides management services of
HTC jobs and IaaS services, referring to HTCaaS[9]. HT-
CaaS system offers Agent-based job execution service and

we had to adjust our scenario in accordance with its agent-
based concept so that constructing a proper experiment en-
vironment. For cloud infrastructure, in addition, we adopt
Amazon EC2 which is one of the well-known commercial
services of public cloud. Accordingly, we configured a net-
work topology for the experiment based on data centers in
Amazon EC2. Figure 4 depicts the configured topology. As
described on that, suppose that a service provider is located
on Korea(Daejeon) and that each site is connected via WAN.
In addition, applying and implementing of PCA to HTCaaS
is based on Flanagan Scientific Library[7]. We ran a real
application which is Autodock as previously addressed and
basically used 10 targets for docking.

Figure 4: Network topology of Amazon EC2 Site

Figure 5: Arrival Pattern of Scenario 1, 2

Figure 6: Arrival Pattern of DAS-2

5.2 Scenarios
For performance evaluation, we ran the experiment with

several scenarios and compared our model to three models
on each scenario. We performed the experiment in accor-
dance with three types of workloads and properties as the
following scenarios:

• Scenario 1 uniformed workload / randomly gener-
ated parameter combinations
• Scenario 2 synthetic workload consisting of uniform

and bursty patterns(Figure 5)/ randomly generated
parameter combinations
• Scenario 3 workload following DAS-2[3]’s arrival pat-

terns(Figure 6) / randomly generated parameter com-
binations(it matches to each task randomly)

The first scenario is to show improvement of performance on
environment with simple patterns of workload without any
interferences and the second one is to evaluate the perfor-
mance in an environment with unexpected and sudden over-
loads. On the third scenario, in case of DAS-2 [3] workloads
which is from GWA(Grid Workload Arhieve)[1], its arrival
pattern shows increasing tendency throughout entire time.
All patterns of the above scenarios are depicted on Figure
7, 8 and 9. For performance metrics to be used for compar-
isons, there are throughput, makespan time, WaitingT ime.
As policies to compare with our model, we employed Ran-
dom, Round-Robin and Best-Effort selection methods. In
case of Best-Effort, it intends to select a site first having
the minimal tasks among entire sites. Overall, we ran one
thousand(1000) number of jobs for five times and exploited
the average of results for performance evaluation. Addition-
ally, we performed a supplementary experiment to explore
appropriate size of profile to be used for profiling.

Figure 7: Experimental Results(makespan)

Figure 8: Avg. Agent Wait Time

5.3 Results
With respect to the addressed conditions, results of the

evaluation are as follows. Figure 7, 8 depicts the compar-
ison results in terms of makespan time and waiting time,
respectively.

According to the result of scenario 1 on the Figure 7, over-
all results have similar durations, but makespan time of the
Best-Effort is resulted in the least time and PHAP leads to

Figure 9: The number of tasks per one PCA accord-
ing to w size(makespan)

the highest makespan time. In case of Best-Effort policy,
the result shows a balanced workload distribution for each
cloud site, since it chose a site having the minimal jobs and
it leads to other lower waiting time than the three of poli-
cies including PHAP. In addition, it is easy to intend a good
result since there are no sudden overloads during the overall
execution. However, the maximum difference between Best-
Effort and PHAP is measured as approximately 41 seconds
and this difference seems a negligible amount as compared
to overall duration. In the results of scenario 2, our PHAP
model leads to the least makespan time and other all of
three conditions shows the longer makespan time than the
previous scenario. In this scenario, the maximum difference
between them is over 250 second and our model achieved
better performance. It seemed that our proposed model is
possible to choose best resource based on historical records
and to do so adaptably. On scenario 3 which is based on
the more realistic arrival pattern than other two scenarios,
moreover, the PHAP model also took the minimum time
among them. It seemed that the proposed model leads to
an accurate selection of site on sudden overloaded environ-
ment. The Figure 8 shows the another performance results.
As we utilized HTCaaS system which uses Agent concept,
we measured the wait time of Agent. It also implies how
much the model can deduce the decision of an allocated site
correctly. In this results, Best-Effort policy has the shortest
wait time on the first scenario, since it chooses a site having
the least running tasks, that is, it adopts the one having the
shortest waiting time.

Therefore, it seems relatively can gain the shortest waiting
time. On the other hand, overall average of waiting time
is the shortest on PHAP model, since it is able to endure
unexpected overload or increasing loads like scenario 2 and
3. Therefore, our PHAP model can contribute to overall
performances by reducing waiting time as well as optimizing
makespan time which is able to lead to better throughputs.

In addition to these, we ran a supplementary experiment
in which w size is controlled. w refers to the number of
recent profiles that we will use in analysis. By carrying
out the experiment, the optimal range of (window) size in
profiles can be grasped. The result shows that profile size to
be used in analysis is the most of appropriate on the size is
approximately 100, where the system affords to take more
tasks in an analysis.

6. CONCLUSION AND FUTURE WORK
This paper proposed PHAP model which is an adaptive

cloud model for allocation and provisioning using historical
factor analysis. The model can effectively construct a scien-
tific cloud infrastructure for HTC. To analysis the profiles of
jobs, we applied PCA technique as a statistical method to
elect the effective factors. The factors are employed for se-
lecting cloud site and deciding proper virtual machine type.

The performance evaluation is performed on HTCaaS sys-
tem which is the agent-based multi-level scheduling system
and its results shows our model can improve overall perfor-
mance of HTC applications as compared with other policies
such as Random, Round-Robin and Best-Effort.

In the near future, we will implement our PHAP model
in the HTCaaS completely and report performance analysis
based on diverse computing infrastructures and scheduling
policies.

7. REFERENCES
[1] G. W. Archive(GWA). http://gwa.ewi.tudelft.nl/.

[2] A. E. C. Cloud). Available at
http://aws.amazon.com/ec2.

[3] DAS2-Grid. Available at http://cs.vu.nl/das2.

[4] I. T. Jolliffe. Principal Component Analysis. Springer,
second edition, Oct. 2002.

[5] S. Kim and Y. Kim. Application-specific cloud
provisioning model using job profiles analysis. In High
Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on, pages 360–366,
2012.

[6] H. Li, D. Groep, and L. Wolters. Efficient response
time predictions by exploiting application and
resource state similarities. In Grid Computing, 2005.
The 6th IEEE/ACM International Workshop on,
pages 8 pp.–, 2005.

[7] F. S. Library.
http://www.ee.ucl.ac.uk/ mflanaga/java/.

[8] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey,
W. E. Hart, R. K. Belew, and A. J. Olson. Automated
docking using a lamarckian genetic algorithm and an
empirical binding free energy function. Journal of
Computational Chemistry, 19(14):1639–1662, 1998.

[9] S. Rho, S. Kim, S. Kim, S. Kim, J.-S. Kim, and
S. Hwang. HTCaaS: A Large-Scale High-Throughput
Computing by Leveraging Grids, Supercomputers and
Cloud. In Research Poster at IEEE/ACM
International Conference for High Performance
Computing, Networking, Storage and Analysis (SC12),
Nov. 2012.

[10] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
overbooking and application profiling in a shared
internet hosting platform. ACM Trans. Internet
Technol., 9(1):1:1–1:45, Feb. 2009.

[11] L. Wang, J. Zhan, W. Shi, and Y. Liang. In cloud, can
scientific communities benefit from the economies of
scale? Parallel and Distributed Systems, IEEE
Transactions on, 23(2):296–303, 2012.

[12] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen,
and Q. Wang. Appliance-based autonomic provisioning
framework for virtualized outsourcing data center. In

Autonomic Computing, 2007. ICAC ’07. Fourth
International Conference on, pages 29–29, 2007.

