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Deep learning hype on media

New York Times (2012)
Google’s artificial brain identifies a cat from YouTube videos without any
labels [Le, Building high-level features using large scale unsupervised learning, 2012]

An image of a cat that a neural network taught itself to recognize
©: Jim Wilson/The New York Times
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Deep learning hype on media (cont’d)

MIT Technology Review (2013)
One of top 10 most promising breakthrough techs

10 Breakthrough Technologies 2013 - MIT Technology Review
©: http://www.computescotland.com/deep-learning-dc-power-grids-bc-robots-6121.php
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Recent impacts

Real industry impacts!
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Recent impacts (cont’d)

Getting scary . . .
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Recent impacts (cont’d)

Google DeepMind Challenge Match (2016)

Sedol Lee vs. AlphaGo. 1 : 4
©: http://www.koreaittimes.com/story/58635/lessons-lee-sedol-vs-alphago-match
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What is deep learning?

Suppose we want to determine whether each image shows a human
face or not

Then our questions are, for example:
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What is deep learning? (cont’d)

Each question can be broke down into sub-questions:

Similar to a human’s perception process
Abstractions from the low level representation to the high level
representation
The higher layer builds new abstarctions on the top of the previous layer

Main idea: learn representations (= features) of data using “multiple
processing layers with non-linear transformations” a.k.a., “artificial
neural networks (ANN)”
Inspired by biological neural networks in a human brain
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Artificial neuron

Motivated from the way that biological impulses transfer between cells

Biological neuron

Artificial neuron
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Artificial neuron (cont’d)

A computational unit (also known as “perceptron”)
Affine transformation + non-linearity
Weights (+ biases) are the parameters to learn

Artificial neuron with three inputs

y = f (Wx + b) = f (
∑
i

Wixi + b)

where f is called an activation
function with non-linearity
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Deep feedforward neural networks

Architecture
An input layer, hidden layer(s), and an output layer consisting of neurons
Each neuron’s ouput can be an input of another neuron at the next layer
No connections between neurons at the same layer, no feedback
connections −→ “feedforward”
Hidden layers can go “deep”, i.e., multiple layers of multiple neurons
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Why “deep”, i.e., multi-layer neural networks?

Shallow NNs may require a huge number of computational units to
model highly varying functions

e.g., checker board function
Deep NNs can nonlinearly distort the input space

In results, a simple classifier can easily separate classes
Deep NNs can learn right transformations for a given learning task

©: [LeCun, Bengio, and Hinton, Deep learning, 2015]
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Architecture

h(0) = x
a(`) = W(`)h(`−1) + b(`)

h(`) = f (a(`)) for ` = 1, 2, ... , L− 1

ŷ = h(L) = g(a(L))

L: network depth
x: input vector
ŷ: output vector
W(`): weight matrix at layer `
b(`): bias vector at layer `
f : activation function for hidden units
g : activation function for output units
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Architecture (cont’d)

For example, if the network consists of three inputs (= x1, x2, x3), one
output (= ŷ), and one hidden layer with three neurons:

h(1)
1 = f (a(1)

1 ) = f (W (1)
11 x1 + W (1)

12 x2 + W (1)
13 x3 + b(1)

1 )

h(1)
2 = f (a(1)

2 ) = f (W (1)
21 x1 + W (1)

22 x2 + W (1)
23 x3 + b(1)

2 )

h(1)
3 = f (a(1)

3 ) = f (W (1)
31 x1 + W (1)

32 x2 + W (1)
33 x3 + b(1)

3 )

ŷ = g(a(2)
1 ) = g(W (2)

11 h(1)
1 + W (2)

12 h(1)
2 + W (2)

13 h(1)
3 + b(2)

1 )
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Activation functions

Nonlinear distortion of the input
Common choices

For hidden units
Sigmoid, tanh, ReLU (rectified linear unit), maxout
ReLU has become a de facto standard recently

For output units for classification: multilogit transform gj(t) = exp(tj )∑
j
exp(tj )

Typically applied to vectors in an element-wise fashion
e.g., f : R3 7→ R3, f ([x1, x2, x3]) = [f (x1), f (x2), f (x3)]
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Training deep feedforward neural networks

Objective: given {(xi , yi)}Ni=1, minimize the cost function

J(θ) =
N∑

n=1
Ji(θ) =

N∑
n=1
L(yi , ŷi)

where θ = (W(1),b(1),W(2),b(2), . . . ,W(L),b(L))
Weights (+ biases) are learned using the gradient descent method:

θ(t+1) := θ(t) − η(t) ∂J
∂θ

(θ(t))

−→

W (`)
km ←−W (`)

km − η
N∑
i=1

∂Ji
∂W (`)

km

b(`)
k ←− b(`)

k − η
N∑
i=1

∂Ji
∂b(`)

k
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Back-propagation algorithm

Back-propagation algorithm (“backprop”) enables us to compute the
gradients very efficiently

Recall J(θ) =
N∑

n=1
Ji(θ) =

N∑
n=1
L(yi , ŷi)

ŷik = h(L)
ik = gk

(
a(L)
i

)
k = 1, . . . ,K

a(L)
i = W(L)h(L−1)

i + b(L) ∈RK

h(L−1)
im1

= f
(
a(L−1)
im1

)
m1 = 1, . . . ,M1

...

h(0)
imL

= ximL mL = 1, . . . ,ML = p
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Back-propagation algorithm (cont’d)

∂Ji
∂W (L)

km1

=
(
∂L
∂ŷi

)>
1×K

(
∂ŷi
∂a(L)

i

)
K×K

(
∂a(L)

i

∂W (L)
km1

)
K×1

=
K∑

k′=1

[(
∂L
∂ŷi

)>(
∂ŷi
∂a(L)

i

)]
k′
·
(

h(L−1)
im1

δk′k

)

=
[(

∂L
∂ŷi

)>(
∂ŷi
∂a(L)

i

)]
k

· h(L−1)
im1

= s(L)
ik · h

(L−1)
im1
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Back-propagation algorithm (cont’d)

∂Ji
∂W (L−1)

m1m2

=
(
∂L
∂ŷi

)>
1×K

(
∂ŷi
∂a(L)

i

)
K×K

(
∂a(L)

i

∂h(L−1)
i

)
K×M1

(
∂h(L−1)

i

∂a(L−1)
i

)
M1×M2

(
∂a(L−1)

i

∂W (L−1)
m1m2

)
M1×1

=
M1∑

m1′=1

[
s(L)
i

1×K
·W(L)

K×M1

· f ′(a(L−1)
im1′

)IM1
M1×M1

]
m1′

· h(L−2)
im2

δm1′m1

=
(

f ′(a(L−1)
im1

)
K∑

k=1
s(L)
ik W (L)

km1

)
· h(L−2)

im2

= s(L−1)
im1

· h(L−2)
im2
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Back-propagation algorithm (cont’d)

In other words,

∂Ji
∂W (L)

km1

= s(L)
ik · h

(L−1)
im1

, s(L)
ik =

[(
∂L
∂ŷi

)>(
∂ŷi
∂a(L)

i

)]
k

"error"

∂Ji
∂W (L−1)

m1m2

= s(L−1)
im1

· h(L−2)
im2

, s(L−1)
im1

= f ′(a(L−1)
im1

)
K∑

k=1
s(L)
ik W (L)

km1

∂Ji
∂W (L−2)

m2m3

= s(L−2)
im2

· h(L−3)
im3

, s(L−2)
im2

= f ′(a(L−2)
im2

)
M1∑

m1=1
s(L−1)
im1

W (L−1)
m1m2

...
...
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Back-propagation algorithm (cont’d)

This suggests a two-pass algorithm
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Back-propagation algorithm: computation

Backprop is merely an exercise of the chain rule for gradient descent
But quickly becomes very complicated with complex neural network
architectures (e.g., for CNNs, W(`) is a tensor)
Computational graph

Re-organize the mathematical expression as operations and nodes
Evaluate the expression by computing up subexpressions through the
graph

e.g., e = (a + b) ∗ (b + 1)⇒

e = c ∗ d
c = a + b
d = b + 1

−→ can evaluate each node when a
and b are given (e.g., a = 2, b = 1)
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Computing the gradient between two nodes

Backward differentiation with the chain rule
Sum over all possible paths from one node to the other, multiplying the
derivatives on each edge of the path together

e.g., ∂e∂b ?
b affects e through c and d −→ ∂e

∂b = ∂e
∂c

∂c
∂b + ∂e

∂d
∂d
∂b = 2 ∗ 1 + 3 ∗ 1
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Advantages of backward differentiation

Locality
At each node, we can compute the local gradient of its inputs w.r.t. its
output value without being aware of any of the details of the full
networks −→ can be implemented efficiently on a parallel machine

Online learning capability
θ can be updated in a sample-by-sample fashion (SGD)
Training epoch - one sweep through the entire training set
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The mini-batch SGD

Stochastic gradient descent (SGD)
Instead of the batch data, work with mini-batch of m examples
SGD is an unbiased estimate of GD when we average the gradient on
mini-batches drawn i.i.d from the data generating distribution

Joong-Ho Won (Seoul National University) Neural Networks and Deep Learning August 25, 2016 29 / 139



The mini-batch SGD (cont’d)

Algorithm 1 SGD update at training iteration k
Require: Learning rate εk
Require: Initial parameter θ

while stopping criterion not met do
Sample a mini-batch of m exmples from the training set
{x(1), . . . , x(m)} with corresponding targets y(i)

Compute gradient estimate ĝ← 1
m∇θ

∑
i L(y(i), f (x(i); θ))

Apply update: θ ← θ − εk ĝ
end while
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The mini-batch SGD (cont’d)

SGD gradient estimator introduces a source of noise (the random
sampling of m training examples) that does not vanish even when we
arrive at a mininum

The learning rate εk is crucial for SGD to work well
A sufficient condition to guarantee convergence:

∞∑
k
εk =∞ and

∞∑
k
εk

2 <∞

In practice, it is common to decay εk linearly until iteration τ :

εk ←− (1− α)ε0 + αεk

with α = k/τ . After interation τ , it is common to leave ε constant.
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A brief history of neural networks

Early age (1940s – 1960s)
McCulloch and Pitts (1943) – biologically inspired, not data-adaptive
Perceptron (Rosenblatt, 1958) – learns linearly separable distributions
Widrow and Hoff (1960) – LMS (SGD) algorithm (linear logistic
regression)
The “XOR problem” (Minsky and Papert, 1969)

————— Criticisms on biologically inspired learning —————
(dormant period of NNs)
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A brief history of neural networks (cont’d)

Second wave (mid 1980s – mid 1990s)
Backprop (Rumelhart et al., 1986)
Universal approximation theorems (Cybenko, 1989; Hornik et al., 1989;
Leshno et al., 1993)
Distributed representation (Hinton et al., 1986)
Convolutional neural networks (LeCun et al., 1990)
Recurrent neural networks (Bengio et al., 1994)
LSTM (Hochreiter and Schmidhuber, 1997)

———————— Vanshing gradient problem ————————
———————– Difficulties in interpretation ————————
——– Other methods (SVM, kernel machines) surpass NNs ——–

(Dark age of NNs)
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A brief history of neural networks (cont’d)

Third wave (2006 – )
Deep belief networks (Hinton and Salakhutdinov, 2006)
Unsupervised, layer-wise pretraining (Hinton and Salakhutdinov, 2006;
Bengio et al., 2007)
Google Youtube (“cat”) (Le, 2012)
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Renaissance - reason 1: unsupervised pre-training

With/Without pre-training

2D visualizations with tSNE (left) and ISOMAP (right) of the functions represented by 50
networks with and 50 networks without pretraining, as supervised training proceeds over the
MNIST dataset. Color from dark blue to cyan indicates a progression in training iterations.

©: [Erhan et al., Why does unsupervised pre-training help deep learning? (2010)]
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Deep belief networks (DBNs): architecture

©: [Hinton and Salakhutdinov, Reducing dimensionality of data with neural networks, 2006]
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Deep belief networks (DBNs): architecture (cont’d)

A generative graphical model
Specify the value of some of the neurons and then “run the network
backward”, generating values for the input activations

Unsupervised and semi-supervised learning
Find the hidden structure in unlabeled data

Main idea (two phases)
Pre-training: unsupervised learning layer-by-layer

Pre-training consists of learning a stack of “restricted Boltzmann
machines (RBMs)”, each having only one layer of feature detectors
The learned feature activations of one RBM are used as input data for
training the next RBM in the stack

Fine-tuning: backprop the whole network
The stacked RBMs are unrolled to create a deep architecture (a deep
“autoencoder” in the original paper), and then backprop is applied to
find more accurate weights
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Deep belief networks (DBNs): RBM

A undirected graphical model with a bipartite graph structure
Input layer v = {v1, v2, ..., vm}>, hidden layer h = {h1, h2, ..., hn}>

Probability distribution it represents:

P(v,h) = 1
Z e−E(v,h)

where Z is the partition function to make
∑

P = 1
The energy function E (v,h) is given as

E (v,h) = −b>v− c>h− h>Wv
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Deep belief networks (DBNs): RBM (cont’d)

The expected value of a hidden node:

P(hi = 1|v) = σ(
m∑
j=1

Wijvj + ci)

The expected value of a visible node can be modeled in a similar way,
in the opposite direction
Each direction of a RBM can be seen as a feedforward NN (v −→ h,
h −→ v) with the sigmoid activation function
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Deep belief networks (DBNs): autoencoder

What it does: dimensionality reduction (nonlinear PCA)
Encoder network: transforms the high-dimensional input data into a
low-dimensional code
Decoder network: recovers the data from the code

Each network (encoder/decoder) can be seen as a feedforward NN
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Training a DBN
1 Train the 1st layer as an RBM seeing the raw input as its visible layer
2 Use the 1st layer’s hidden layer as the 2nd layer’s visible layer
3 Train the 2nd layer as an RBM, taking the transformed data (e.g., samples or mean

activations) of the 1st layer’s output as its input
4 Iterate 2 and 3 for the desired number of layers
5 Unroll RBMs to create a deep architecture and fine-tune all parameters of the whole

network using backprop
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Modern deep learning (2012 –)

DBNs and layer-wise unsupervised pretraining are no longer widely used
Backprop struck back!

ReLUs replaced sigmoids – facilitated backprop (Glorot et al., 2011)
“Using a rectifying nonlinearity is the single most important factor in
improving the performance of a recognition system” (Jarrett et al., 2009)

Training modern DNNs = ReLU + backprop
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Renaissance - reason 2: going big

Training DNNs has been regarded as an art rather than a science
With more training data, the “art” part diminishes

©: [Goodfellow et al., Deep learning, 2016]

“The most important new development is that today we can provide
these algorithms (ReLU + backprop) with the resources they need to
succeed” (Goodfellow et al., 2016)
Made possible by the “Big Data” era
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Renaissance - reason 3: computational resources

Computers can run much larger models than those of 80s

©: [Goodfellow et al., Deep learning, 2016]

1. Adaptive linear element (Widrow and Hoff, 1960) 2. Neocognitron (Fukushima, 1980)
3. GPU-accelerated CNN (Chellapilla et al., 2006) 4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
5. Unsupervised CNN (Jarrett et al., 2009) 6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
7. Distributed autoencoder (Le et al., 2012) 8. Multi-GPU CNN (Krizhevsky et al., 2012)
9. COTS HPC unsupervised CNN (Coates et al., 2013) 10. GoogLeNet (Szegedy et al., 2014a)
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Renaissance - reason 3: computational resources (cont’d)

Largely due to the advent of general purpose GPUs
Massive amount of independent computations (multiplying many vectors
with the same matrix)
No branching
high degree of parallelism, high memory bandwidth

Fit computational requirements for DNN algorithms
Locality of backprop −→ no branching; parallel update
Large and numerous buffers of parameters updated every iteration −→
require high memory bandwith

GPUs are cheaper
Other choices: fast CPUs + high-speed network = expensive
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Two most successful deep architectures

Convolutional Neural Networks (CNN)
Excellent for image data

Recurrent Neural Networks (RNN)
Excellent for sequential data
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A brief history of CNN

Neocognitron (Fukushima, 1980)
Hierarchical & shift invariant model for vision problem
Lacks supervised training algorithm

Interconnections between layers in the neocognitron
©: [K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by

shift in position, 1980]
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A brief history of CNN (cont’d)

LeNet (LeCun, 1989)
Supervised training for CNN (SGD, back-propagation)

©: [LeCun et. al., Backpropagation applied to handwritten zip code recognition, 1989]
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Architecture

(Convolution + pooling) × k layers + fully-connected layer
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Properties

Very well-suited to image recognition
Sparse connections and parameter sharing at the convolution layer
Powerful regularization techniques (notably “dropout”) to reduce
overfitting at the fully-connected layer
Using ReLUs instead of sigmoid functions

−→We will cover the detail while seeing each layer
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Convolution layer

Extracts feature maps by repeatly applying a kernel (= “convolution” +
nonlinearity) across a finite support of the input image called
“receptive fields”

To form a richer representation of the data, each hidden layer is
composed of multiple feature maps, {hk , k = 0, . . . ,K}
The k th feature map at a given layer: hkij = f ((Wk ∗ x)ij + bk)

∗: convolution operator
f : nonlinear function (e.g., ReLU)

Example of a convolution filter Example of a convolution layer with 3 feature maps
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Convolution layer

Sparse connectivity
Only connections from units having spatially continuous receptive fields
Each unit is unresponsive to variations outside of its receptive field
The learnt filters produce the strongest response to a spatially local
input pattern, but can be global if we stack many layers

Weight sharing
Weight matrix (tensor) W for each layer is sparse (block Toeplitz)
Achieves shift (translation) invariance
Increases learning efficiencty

Example of sparse connections and parameter sharing
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Pooling layer (sub-sampling layer)

Dimension & computation reduction
Pooling is a step that summarizes the output values over a neighborhood
Can obtain effciencies in computing and memory

Translation invariance
Makes the model robust to small change in the input

Usally used immediately after the convolution layer

Examples of pooling: max pooling and average pooling
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Fully-connected (classification) layer

Learns at the more abstract level, integrating the global information
from across the entire image, whereas convolution and pooling layers
learn about the local spatial structures in the image
Architecture

Softmax output layer:

pi = exp(hi)∑
j exp(hj)

Cross-entropy loss:

L(y,p) = −
M∑
i

yi log pi
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How can we improve the performance of CNNs?

Apply a second convolution-pooling layer
Use ReLUs
Regularization

helps networks avoid local minima or getting overfitted
e.g., weight decay (L1/L2 regularization), dropout, early stopping

Artificially expand the training data
e.g., rotating, translating, or skewing the training image

Use an ensemble of networks
Create several neural networks and then make them vote to determine
the best classification
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Training CNN: backprop + mini-batch SGD

Forward pass: compute the cumulated loss

Backward pass: update filter weights using the stochastic gradient
descent (SGD)
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Training CNN: dropout

Overfitting
Good for training set, but bad for test set
Happens when a model is large (= a large number of parmeters) but we
have small training data

Dropout
At each forward pass in the final fully-connected layers, randomly drop
each node with probability P (typically 0.5)
Empirically turns out to be an excellent regularization
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Applications of CNN: image recognition

ImageNet
15 million labeled images(224x224) for 22000 classes
Managed by Stanford & UNC Chapel Hill

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)
1.2 million (training), 50K (validation), 150K (testing)
1000 classes (roughly 1000 images/class)
Annual challenge since 2010

logo
©: http://www.image-net.org

Example images from the classification task
©: http://vision.stanford.edu/Datasets
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Two main tasks in ILSVRC: classification

Classification (image-level annotation)
“There is a Siberian husky in this image”, “there are no tigers”
Metric: top-5 error (correct if the true class is in top-5 predicted classes)

Siberian husky (left) vs. Eskimo dog (right) from the 1000 classes of ILSVRC 2014
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Two main tasks in ILSVRC: detection

Detection (object-level annotation)
“There is an orange centered at position (100, 100) with width of 50
pixels and height of 40 pixels.”
Metric: mAP (mean average precision)

Examples of image detection done by the GoogLeNet team in ILSVRC 2014
©: http://googleresearch.blogspot.com/2014/09/building-deeper-understanding-of-images.html
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Classification: AlexNet

Winner of ILSVRC 2012
First large-scale implementation of deep CNN using GPUs
“The current intensity of commercial interests in deep learning begun”
Architecture

5 convolution layers, 2 fully connected layers (60M parameters, used 2
NVIDIA GPUs and CUDA library [cuda-convnet])
2x2 max-pooling, ReLU
Regularization: data augmentation (translation, reflection, intensity),
dropout for fully connected layers

The architecture of AlexNet showing the delineation of responsibilities between the two GPUs
©: [Krizhevsky et. al., ImageNet classification with deep convolutional neural networks, 2012]
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Classification: AlexNet (cont’d)

Result on ILSVRC 2012
38% better than the second best

A shocking result for a single improvement!

AlexNet was the only model that used CNN in 2012
Ensemble of multiple models was also important

Comparison of error rates on ILSVRC 2012 validation and test sets
©: [Krizhevsky et. al., ImageNet classification with deep convolutional neural networks, 2012]
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Classification: ZFNet (DeconvNet)

Winner of ILSVRC 2013
Devised a visualization technique for CNN (“deconvolution”)

To see what the convolutional filters are learning, project down each
layer’s representation to pixel level

©: [Zeiler and Fergus, Visualizing and understanding convolutional networks, 2013]
Joong-Ho Won (Seoul National University) Neural Networks and Deep Learning August 25, 2016 69 / 139



Classification: ZFNet (DeconvNet) (cont’d)

Visualization of convolution filters (Layer 1, 2)
Layer 1: lower level cues (edge, color, etc.)
Layer 2: partial objects

©: [Zeiler and Fergus, Visualizing and understanding convolutional networks, 2013]
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Classification: ZFNet (DeconvNet) (cont’d)

Layer 3: higher level objects

©: [Zeiler and Fergus, Visualizing and understanding convolutional networks, 2013]
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Classification: ZFNet (DeconvNet) (cont’d)

Layer 4, 5: even higher level objects

©: [Zeiler and Fergus, Visualizing and understanding convolutional networks, 2013]
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Classification: ZFNet (DeconvNet) (cont’d)

Utilized visualization for selecting better parameters
First layer (11x11, stride 4) −→ (7x7, stride 2)
New model learns much diverse and stable filters

Achieved 11.7% top-5 error
Another 28% error reduction over AlexNet!

8 layer convnet model with a 224x224 RGB image as an input
©: [Zeiler and Fergus, Visualizing and understanding convolutional networks, 2013]
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Classification: VGGNet

ILSVRC 2014 runner-up
Motivation: how deep can CNN go?

Fix filter/stride size and increase depth up to 19 weight layers
Demonstrated that the representation depth is beneficial for the
classification accuracy, using a conventional CNN architecture with
substantially increased depth (16-19 weight layers, 140M parameters)
Later found that the VGGNet features transfer well to other tasks;
pretrained model available publicly

Comparison of error rates on ILSVRC 2014 with the state of the art
©: [Simonyan and Zisserman, Very deep convolutional networks for large-scale image recognition, 2015]
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Classification: GoogLeNet

Winner of ILSVRC 2014
Motivation: will large model with large data solve everything?

No! (overfitting, memory limit)
Sparsity may help −→ But, GPU cannot handle true sparsity

Inception module
Try to benefit from both sparsity and parallelization
Convolution layer decomposes into filters with multiple scales

Inception modules. Naive version (left) vs. dim. reduction version (right)
©: [Szegedy et. al., Going deeper with convolutions, 2014]
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Classification: GoogLeNet (cont’d)

Architecture

©: [Szegedy et. al., Going deeper with convolutions, 2014]
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Classification: GoogLeNet (cont’d)

Architecture
22 layers, but 12 times fewer parameters than AlexNet (~6M parameters)

GoogLeNet network with all the bells and whistles
©: [Szegedy et. al., Going deeper with convolutions, 2014]

Achieved 6.67% top-5 error
Another 43% error reduction over DeconvNet!
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Classification: batch-normalized CNNs (BN-CNN)

GoogLeNet + batch normalization
Achieved 4.82% top-5 error on ILSVRC 2014 set

Another 28% error reduction over GoogLeNet!
71% reduction over AlexNet!
82% reduction over pre-CNN in 3 years!

Comparison with previous state of the art on ILSVRC 2014 validation set
©: [Ioffe and Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015]
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Batch normalization

Internal covariate shift
The distribution of each layer’s inputs changes during training, as the
parameters of the previous layers change
This slows down the training by requiring lower learning rates and
careful parameter initialization

Batch normalization
Can reduce internal covariate shift by performing a normalization of each
activation x (= each input of a layer) over a mini-batch
Allows us to use much higher learning rates and be less careful about
initialization by reducing the dependence of gradients on the scale of the
parameters or of their initial values
Regularizes the model and reduces the need for dropout

Joong-Ho Won (Seoul National University) Neural Networks and Deep Learning August 25, 2016 79 / 139



Batch normalization (cont’d)
Batch normalizing transform

Input: values of x over a mini-batch: B ={x1...m}
Input: parameters to be learned: γ, β
Output:{yi = BNγ,β(xi )}

µB ←
1
m

m∑
i=1

xi // mini-batch mean

σ2B ←
1
m

m∑
i=1

(xi − µB)2 // mini-batch variance

x̂i ←
xi − µB√
σ2B + ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi ) // scale and shift

The scaling & shifting step enables BN transform to represent the
identity transfrom (γ =

√
σ2B + ε, β = µB), which is required as simply

normalizing each input of a layer may change what the layer can
represent
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Architecture

h(t) = f (Wh(t−1) + Ux(t) + b)
ŷ(t) = g(Vh(t) + c)
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Properties

Handling seqeuntial data
e.g., language model (predicting next word given past)

Memory
You can think of the hidden state h(t) as the (lossy) “memory” of the
network, which captures information in all the previous time steps

Parameters sharing
The same parameters W, U, V, b, c across all steps −→ perform the
same task at each step, just with different inputs (“recurrent”)

In theory, the number of time steps can be very deep, but in practice,
are limited to look back only a few steps
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Training RNNs

Express a RNN as a unfolded computational graph, and then apply the
Back-propagation algorithm through time (BPTT)
Given a training set {(x(t), y(t))}τt=1, the runtime is O(τ) and cannot
be reduced by parallelization because it is inherently sequential; each
time step can only be computed after the previous one
The memory cost is also O(τ) as states computed in the forward pass
must be stored until they are reused during the backward pass
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Back-propagation through time (BPTT): example

(An example from [Goodfellow et al., Deep learning, 2016]) f = tanh, g=softmax, and
the loss is the negative log-likelihood of the true target y(t) given the input so far

h(t) = tanh(Wh(t−1) + Ux(t) + b)

o(t) = Vh(t) + c

ŷ(t) = softmax(o(t))

L =
∑
t

L(t) =
∑
t

L(y(t), ŷ(t)) =
∑
t

− log ŷ (t)
y (t)

−→ ∇cL,∇bL,∇VL,∇WL,∇UL?
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Back-propagation through time (BPTT): example (cont’d)
Start the recursion with the nodes immediately preceding the final loss

∂L
∂L(t) = 1

On the outputs at time step t

(∇o(t)L)i =
∂L
∂oi (t) =

∂L
∂L(t)

∂L(t)

∂oi (t) = ŷ (t)
i − 1i,y (t)

At the final time step τ , h(τ) only has o(τ) as a descendent

∇h(τ)L =
(
∂o(τ)

∂h(τ)

)>
∇o(τ)L = V>∇o(τ)L

Iterate backwards through time, from t = τ − 1 down to t = 1, noting that h(t) (for
t < τ) has descendents both and o(t) and h(t+1)

∇h(t)L =
(
∂h(t+1)

∂h(t)

)>
(∇h(t+1)L) +

(
∂o(t)

∂h(t)

)>
(∇o(t)L)

= W>(∇h(t+1)L)diag
(
1− (h(t+1))2

)
+ V>(∇o(t)L)
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Back-propagation through time (BPTT): example (cont’d)
To clarify our notation, we introduce dummy variables W(t) (U(t)) that are defined to be
copies of W (U) but with each W(t) (U(t)) used only time step t. Then let’s use ∇W(t)
(∇U(t) ) to denote the contribution of the weights at time step t to the gradient. =⇒

∇cL =
∑
t

(
∂o(t)

∂c

)>
∇o(t)L =

∑
t

∇o(t)L

∇bL =
∑
t

(
∂h(t)

∂b

)>
∇h(t)L =

∑
t

diag
(
1− (h(t))2

)
∇h(t)L

∇VL =
∑
t

∑
i

(
∂L

∂o(t)
i

)
∇Vo

(t)
i =

∑
t

(∇o(t)L)h(t)>

∇WL =
∑
t

∑
i

(
∂L

∂h(t)
i

)
∇W(t)h(t)

i =
∑
t

diag
(
1− (h(t))2

)
(∇h(t)L)h(t−1)>

∇UL =
∑
t

∑
i

(
∂L

∂h(t)
i

)
∇U(t)h(t)

i =
∑
t

diag
(
1− (h(t))2

)
(∇h(t)L)x(t)>
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Problems with BPTT: vanishing or exploding gradients

When unfolded, the depth of RNN can reach 1000s
In a language model example below, RNN tends to predict better for the
paragraph 1

Paragraph 1: “Jane walked into the room. John walked in too. Jane
said hi to .”
Paragraph 2: “Jane walked into the room. John walked in too. It was
late in the day, and everyone was walking home after a long day at work.
Jane said hi to .”

Gradients propagated over many stages tend to either vanish (most of
the time) or explode (rarely, but with much damage to the
optimization)
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Vanishing or exploding gradients

Let’s see a simple RNN

h(t) = Wf (h(t−1)) + Ux(t) + b
ŷ(t) = Vf (h(t))

For analysis, apply chain rule rather than back-propagation

∂L
∂W =

τ∑
t=1

∂L(t)

∂W

∂L(t)

∂W =
t∑

k=1

∂L(t)

∂ŷ(t)
∂ŷ(t)

∂h(t)
∂h(t)

∂h(k)
∂h(k)

∂W

∂h(t)

∂h(k) =
t∏

j=k+1

∂h(j)

∂h(j−1) =
t∏

j=k+1
W>diag[f ′(h(j−1))]
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Vanishing or exploding gradients (cont’d)

If we define β’s as upper bounds of the norms

‖ ∂h(j)

∂h(j−1) ‖ ≤ ‖W
>‖‖diag[f ′(h(j−1))]‖ ≤ βwβh

=⇒ ‖ ∂h(t)

∂h(k) ‖ = ‖
t∏

j=k+1

∂h(j)

∂h(j−1) ‖ ≤ (βwβh)t−k

This can become very small or very large quickly!
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Solutions? Make the product of gradients be close to one!

In the previous slide, we found that the problem mainly occurs due to
the value of the norm of Jaconbians ‖J(t)‖ = ‖ ∂h(j)

∂h(j−1) ‖
Intuitively, to prevent gradients from vanishing or exploding, we have
to make ‖J(t)‖ not too small and not too big ≈ 1
We’ll see many solutions in turn, with an emphasis on LSTM
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Solution (for exploding): gradient clipping

The objective function of RNNs often contains sharp nonlinearities in
parameter space due to the multiplication of several parameters
When the parameter gradient is very large, gradient descent could
throw the parmeter into a region where the objective function is larger
Ways to clip the gradient g (per mini-batch)

Clip ‖g‖ just before the parameter update if ‖g‖ > v by g← gv
‖g‖

Clip g element-wise
take a random step if ‖g‖ > v

Gradient descent without gradient clipping may overshoot the cost function
©: [Pascanu et al., On the diffculty of training recurrent neural networks, 2013a]
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Solution: regularization

We would like the gradient vector ∇h(t)L being back-propagated to
maintain its magnitude, even if the loss function only penalizes the
output at the end of the sequence
Formally, we want (∇h(t)L) ∂h(t)

∂h(t−1) to be as large as ∇h(t)L

−→ Ω =
∑
t

Ωt =
∑
t

‖(∇h(t)L) ∂h(t)

∂h(t−1) ‖
‖∇h(t)L‖

− 1

2

Then optimize the cost function regularized by this, i.e., J̃ = J + λΩ
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Solution: proper weights & activation functions

Another way is to initialize the recurrent weight matrix W properly, or
to select proper activation functions like ReLU
Combined [Le et al., A simple way to initialize recurrent networks of rectified linear units, 2015]

Initialize W to be I and biases to be zero and use ReLUs
Good performance in the MNIST classification experiment, where the
sequential inputs are 784 pixels, the output is the cataory, and the
networks read one pixel at a time (784 time steps!)

©: [Le et al., A simple way to initialize recurrent networks of rectified linear units, 2015]
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Solution: different optimization methods

Hessian-Free (HF) optimization
More sophisticated optimization method than SGD [Martens and Sutskever,
Learning recurrent neural networks with Hessian-Free optimization, 2011]

SGD with momentum and careful initialization
SGD with momentum: θ ← θ + αv− ε∇θL

Introduces a variable v that plays the role of velocity, i.e., the direction
and speed at which the parameters move through parameter space
Solves two problems: poor conditioning of the Hessian matrix and
variance in SGD [Sutskever, Martens, Dahl, and Hinton, On the importance of initialization and
momentum in deep learning, 2013]
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Solution: echo state networks and leaky units

Echo state networks
Sets the input and reccurent weight W properly (by fixing the spectral
radious of recurrent parameter W) so that the recurrent hidden units
capture past information well, and then only learn the ouput weights
How to train?

Randomly construct a RNN: # of layers, (sparse) U & W
Renormalize the spectral raidous of W: W← λ W

λM
Train only the ouput weights

Leaky (integration) units
Hidden recurrent units with linear-self connections and a weight near 1
on these connections
h(t) = αh(t−1) + (1− α)f (Wh(t−1) + Ux(t) + b)
α is near one, the information is remembered for a long time
α is near zero, the information is discarded rapidly
α can be chosen manually or learned
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Solution: long short-term memory (LSTM)

As of now, the most effective models based on the idea of making the
product of gradients is close to one are long short-term memory
(LSTM) and its variants, including the gated recurrent units (GRUs)
Leaky units vs. LSTM

Leaky units h(t) = αh(t−1) + (1− α)f (Wh(t−1) + Ux(t) + b) have the
same α over time, whether it is chosen manually or learned ←→ LSTM
allows the connection weights to change at each time step
Leaky units only accumulate information ←→ LSTM can forget the old
state
The scalar value α can be either near one or near zero, but cannot be
both at the same time ←→ LSTM achieves this using gate units passed
a sigmoid layer
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Long short-term memory (LSTM)

The key to LSTMs is the cell state units having an internal recurrence
(linear self-loop), which work as a conveyor belt of information
LSTMs have the ability to remove or add information to the cell state,
carefully regulated by structures called gates (= forget/input gates)
Gates output numbers between 0 and 1, describing how much of each
component should be let though
Invented by Sepp Hochreiter and Jurgen Schmidhuber (1997)
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LSTM architecture (unfolded)

h(t) = o(t) � go(c(t)) (block out)

o(t) = σ(Woh(t−1) + Uox(t) + bo) (output gate)

c(t) = i(t) � z(t) + f(t) � c(t−1) (cell state)

f(t) = σ(Wf h(t−1) + Uf x(t) + bf ) (forget gate)

i(t) = σ(Wih(t−1) + Uix(t) + bi ) (input gate)

z(t) = gi (Wzh(t−1) + Uzx(t) + bz ) (block input)

(� means element-wise multiplication)

o(t): decides what information of go(c(t)) we will output (typically go = tanh)
f(t): decides what information of c(t−1) we will keep or forget
i(t): decides what new information of z(t) we will store in c(t)

z(t): candidate values that can be added to the state (typically gi = tanh)
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LSTM model - revisited

c(t) = i(t) � z(t) + f(t) � c(t−1)

= σ(Wih(t−1) + Uix(t) + bi)� gi(Wzh(t−1) + Uzx(t) + bz)
+ σ(Wf h(t−1) + Uf x(t) + bf )� c(t−1)

= F1(h(t−1), x(t)) + F2(h(t−1), x(t))� c(t−1)

= F (h(t−1), x(t), c(t−1))

h(t) = o(t) � go(c(t))
= σ(Woh(t−1) + Uox(t) + bo)� go(c(t))
= G(h(t−1), x(t), c(t))
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LSTM variants: gated recurrent units (GRUs)

The main difference with LSTM is the introduction of an “update gate”
(=z(t)), which simultaneously controls the forgetting factor and the
decision to update the state unit
The reset gate (=r(t)) controls which parts of the state get used to
compute the next target state (=h̃(t)), introducing an additional
nonlinear effect in the relationship between past state and future state
GRUs also merge the cell state and hidden state

h(t) = z(t) � h̃(t) + (1− z(t))� h(t−1) (state gate)

h̃(t) = tanh(Wg (r(t) � h(t−1)) + Ugx(t) + bg )

r(t) = σ(Wrh(t−1) + Urx(t) + br ) (reset gate)

z(t) = σ(Wzh(t−1) + Uzx(t) + bz ) (update gate)
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LSTM variants: performance comparison

Other variants are:
No Input Gate (NIG)
No Forget Gate (NFG)
No Output Gate (NOG)
No Input Activation Function (NIAF)
No Output Activation Function (NOAF)
No Peepholes (NP)
Coupled Input and Forget Gate (CIFG) (= GRUs)
Full Gate Recurrence (FGR)

Which architecture is the best, among the vanilla LSTM and its
variants, with different hyperparameters?

Empirical evaluations [Greff et al., LSTM: A search space odyssey, 2015]
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LSTM variants: performance comparison (cont’d)

Hyperparamter search

Test set performance for top 10 % hyperparameter settings for each dataset and variant
©: [Greff et al., LSTM: A search space odyssey, 2015]

- Vanilla LSTM works well
- CIFG, NP also work reasonably well
- FG, output activation is important

Each hyperparameter search consists of 200 trials (for a total of 5400 trials)
of randomly sampling the following hyperparameters:
- # of LSTM blocks per hidden layer: log-uniform samples from [20, 200]
- learning rate: log-uniform samples from [10−6, 10−2]
- momentum: 1 - log-uniform samples from [0.01, 1.0]
- standard deviation of Gaussian input noise: uniform samples from [0, 1]
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LSTM variants: performance comparison (cont’d)

Test set variance breakdown for each hyperparameter
Learning rate is the most sensitive hyperparameter!

©: [Greff et al., LSTM: A search space odyssey, 2015]
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LSTM variants: Deep LSTM (RNN)

Multiple hidden reccurent states of LSTMs (RNNs)
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LSTM variants: bidirectional LSTM (RNN)

Based on the idea that the output at time t may depend on both the
previous and the future elements in the sequence

e.g., to predict a missing word in a sequence, we may want to look at
both the left and the right context

Architecture: two LSTMs (RNNs) stacked on top of each other
The output is computed based on the hidden state of both LSTMs
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Applications of RNN (LSTM): speech recognition

Three components:
Acoustic model (AM): estimate phoneme probability given input
waveform
Language model (LM): estimate word probability given past word
sequence
Decoder: combine AM+LM to estimate best sentence
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Applications of RNN (LSTM): acoustic model

BLSTM takes entire speech for recognition at time t
Long-term memory can improve the accuracy
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Applications of RNN (LSTM): acoustic model

TIMIT: standard benchmark for phoneme recognition
3.5 hours (small set)

[Graves et. al., Speech recognition with deep recurrent neural networks, 2013]
[Hannun et. al., Deep speech: Scaling up end-to-end speech recognition, 2014]
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Applications of RNN (LSTM): machine translation

Statistical machine translation (SMT)
Statistically estimates the target sentence from the source sentence
Challenge: word order difference, one-to-many

How to find (stochastic) mapping between sentences?
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Applications of RNN (LSTM): machine translation

Neural machine translation (NMT): LSTM plays a central role
Main idea: use Encoder-Decoder idea

Encoder: find a representation of source
Decoder: generate a translation with encoded representation

[Cho et. al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, 2014]
[Sutskever et. al., Sequence to sequence learning with neural networks, 2014]
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Applications of CNN + RNN (LSTM): image captioning

“Translate” image to text
Same principle as machine translation
Combine CNN (encoder) + RNN/LSTM (decoder)

©: [LeCun, Bengio, and Hinton, Deep learning, 2015]

Joong-Ho Won (Seoul National University) Neural Networks and Deep Learning August 25, 2016 117 / 139



Outline

Introduction
Convolutional neural networks (CNN)
Recurrent neural networks (RNN)
A statistical view of deep learning

Recursive GLMs
Kernel regression
RNNs as state-space models

Open source tools

Joong-Ho Won (Seoul National University) Neural Networks and Deep Learning August 25, 2016 118 / 139



Outline

Introduction
Convolutional neural networks (CNN)
Recurrent neural networks (RNN)
A statistical view of deep learning

Recursive GLMs
Kernel regression
RNNs as state-space models

Open source tools

Joong-Ho Won (Seoul National University) Neural Networks and Deep Learning August 25, 2016 119 / 139



Recursive GLMs

Deep feedforward NNs can be seen as recursive generalized linear
models
Basic linear regression model

Assumes that the outputs are corrupted by Gaussian noise of unkown
variance σ2:

η = βTx + β0

y = η + ε

where ε ∼ N(0, σ2)
Generalized linear model (GLM)

Extends LM to problems where the distribution of y is not Gaussian but
some other distribution (typically a distribution in the exponential
family):

η = βTx
E[y ] = µ = g−1(η)

where β := [β, β0], x := [x, 1] and g(·) is the link function
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Recursive GLMs (cont’d)

Activation function in NN = inverse link function in GLM
Recall what an activation function does: affine transform + nonlinearity

Target type Regression Link Inv. link Activation

Real Linear Identity Identity Identity

Binary Logistic Logit log µ
1−µ Sigmoid 1

1+exp(−η) Sigmod

Binary Probit Inv. Gaussian CDF Φ−1(µ) Gaussian CDF Φ(η) Probit

Binary Logistic tanh(η) tanh

Categorical Multinomial Multilogit exp(ηi )∑
j
exp(ηj )

Softmax

Sparse Tobit max(0, ν) ReLU
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Recursive GLMs (cont’d)

For an inverse link or activation function f (`) at layer `, consider the
following relationship:

h(`) , f (`) ◦ η(`)

η(`)(h(`−1)) , 〈β(`),h(`−1)〉
where h(0) = x.
Then we can easily specify a recursive GLM by iteratively applying or
composing it:

E[y |x] = h(L) ◦ h(L−1) ◦ . . . ◦ h(1)(x)
= f (L) ◦ η(L) ◦ f (L−1) ◦ η(L−1) ◦ . . . ◦ f (1)

=g−1
◦ η(1)(x)

= g−1(η(1)(x)) = g−1(β(1)>x)

which is exactly the same as the L-layer deep feedforward NN.
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Recursive GLMs (cont’d)

Thus, a DNN can be viewed as a GLM whose inverse link function is
recursively defined.
Learning and estimation

Estimation or learning in deep neural networks corresponds directly to
maximum likelihood estimation in recursive GLMs: L = − log p(y |x)
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Kernel regression

To connect NNs to the linear model, let’s separate the last linear layer
from the layers that appear before it, i.e., denote the first L− 1 layers
by the mapping φ(x; θ) with parameters θ, and the final layer weight
w:

Sytematic: f = w>φ(x; θ)

Random: y = f (x) + ε ε ∼ N (0, σ2y )

The loss function for the output weights is of particular interest, since it
will offers us a way to move from neural networks to other types of
regression

J(w) = 1
2

n∑
i=1

(yi −w>φ(xi ; θ))2 + λ

2w>w
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Kernel regression (cont’d)

Using the fact 1
2w>w = max

α
〈w,α〉 − 1

2α>α,

min
w

J(w) = 1
2

n∑
i=1

(yi −w>φ(xi))2 + λ

(
max

α
〈w,α〉 − 1

2α>α

)

= min
w

max
α

1
2

n∑
i=1

(yi −w>φ(xi))2 + λw>α− λ

2α>α


L(w,α)

= min
w

max
α
L(w,α)

= max
α

min
w
L(w,α) = max

α
g(α)

where g(α) = inf
w
L(w,α) = −λ2β>(K + λI)β + λβ>y with

βi = 1
λ(yi −w>φ(xi)) and Kij = φ(xi)φ(xj)
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Kernel regression (cont’d)

Thus, the dual is

max
β
−1
2β>(K + λI)β + β>y

or β̂ = (K + λI)−1y
DNNs: parametically estimate the function φ(xi)
Kernel machines: only consider inner products and choose a kernel
function k(x, x′)
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RNNs as state-space models

Let’s consider the case of a RNN where inputs are a sequence of
random variables {x(t)}τt=1 and no additional inputs

The input at time step t is simply the output at time step t − 1

h(t) = f (h(t−1), x(t); θ)

J(θ) =
τ∑

t=1
L(t) =

τ∑
t=1
L(h(t−1), x(t))
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RNNs as state-space models (cont’d)

This RNN can be interpeted as a state-space model with a sequence of
latent (or hidden) dynamics length τ

Latent states h(t) and observed data x(t) are assumed to be probabilistic
Transition probability is the same for all time (= parameters sharing in a
RNN)

In probabilistic modeling, the core quantity of interest is the joint
distribution of the observed sequence x(t), i.e.,

p(x(1), . . . , x(τ)) =
τ∏

t=1

∫
p(x(t)|h(t−1))p(h(t−1)|h(t−2))dh(t−1)
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RNNs as state-space models (cont’d)

If we use the negatvie log-likelihood loss,

J(θ) =
τ∑

t=1
− log

∫
p(x(t)|h(t−1))p(h(t−1)|h(t−2))dh(t−1)

(∗)=
τ∑

t=1
− log p(x(t)|f (h(t−2), x(t−1); θ))

(∗) holds as the transition dynamics is deterministic, i.e.,

p(h(t−1)|h(t−2); θ) = δ(h(t−1)) = f (h(t−2), x(t−1); θ))

This loss function is equivalent to that of the RNN, if we set

L(h(t−1), x(t)) = − log p(x(t)|h(t−1) = f (h(t−2), x(t−1); θ))
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Open source tools

Caffe
Maintained by UC Berkeley BLVC
http://caffe.berkeleyvision.org/

Theano
Maintained by University of Montreal
Strong Python integration
http://deeplearning.net/software/theano/

Torch
Maintained by NYU, Facebook
Based on Lua
http://torch.ch/

Tensorflow
Maintained by Google (most recent)
https://www.tensorflow.org/
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